Implementation in Parallel – Shortening Turnkey Lab RCx Project Timelines - A Case Study

Presented by B2Q Associates, Inc.

Chris Schmidt & Brad Newell

B2(2)

A Woman Business Enterprise (WBE)

UMass Amherst

- ISB
- ELAB II
- LSL North & South

Learning Objectives

- Increase awareness of the importance of a collaborative team approach as a main driver of the success of lab safety and energy optimization projects – building the right team
- 2. Understand the complexities and moving parts of implementation and study projects running in parallel and how to leverage each phase for project success.
- 3. Improve ability to identify, develop, implement, and maintain a successful lab energy efficiency and optimization project by taking a step-wise and multi-disciplinary approach.
- 4. Identify potential areas for unsafe and energy intensive operations in lab facilities.

Project Introduction

Recent projects at the University of Massachusetts Amherst provided the opportunity for B2Q to develop a stepwise, multidisciplinary approach to optimizing lab buildings and through recommissioning and turnkey implementation

	2015-2016 Multidisciplina	2018 – Implementation in Parallel				
•	Integrated Sciences Building	 Engineering Lab II (ELab II) 	 Life Science Labs North & 			
	8 years old	 13 years old 	South			
	• 150,000 ft ² (85,000 ft ² of	• 61,000 ft ² (21,474 ft ² of	 4/2 years old (N./S.) 			
	Lab Space)	Lab Space)	• 310,000 ft ² (50% labs)			
	 4,620,580 kWh - 	• 2,636,348 kWh -	• 7,432,504 kWh -			
	Baseline	Baseline	Baseline			
	 29,000 MLbs Steam - 	 15,096 MLbs Steam - 	 24,580 MLbs Steam - 			
	Baseline	Baseline	Baseline			
	 \$1,042,058 in Energy 	 \$565,554 in Energy 	• \$1,234,850 in Energy			
	Annually – Baseline	Annually – Baseline	Annually – Baseline			
	 EUI: 275 kBtu/ft² – 	• EUI: 359 kBtu/ft ² –	• EUI: 240 kBtu/ft ² -			
	Baseline (2015)	Baseline (2015)	Baseline (2016)			

2014 – 2016 Stepwise - Multidisciplinary Approach

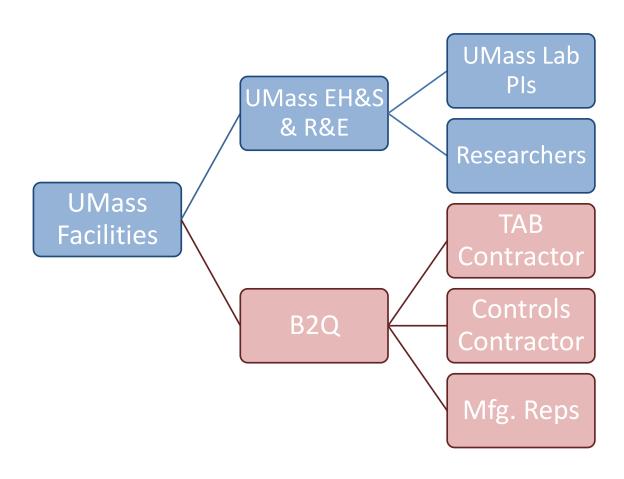
Step 1

Multi-Building Scoping Audits

Step

 Focused Lab Optimization Studies on Selected Lab Buildings

Step 3

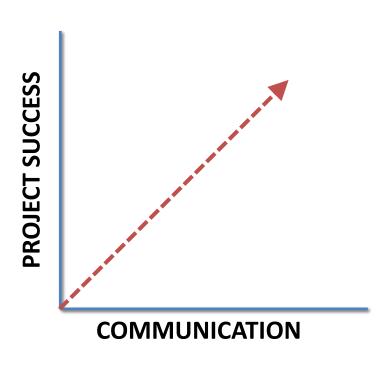

 Implementation, Commissioning & Owner Training

Step 4

 Measurement & Verification of Safety and Savings

Step 5

 Persistence via Communication & Continuous Commissioning


Stepwise Approach Results

UMass ISB & Elab II Measured and Verified Savings							
Building	Total Electric Energy Savings	Steam Energy Savings	Energy Cost Savings	Implementation Cost	Simple Payback Before Incentive		
-1	kWh	Mlb	\$	\$	yrs.		
ISB	1,851,862	10,738	\$399,946	\$590,968	1.5		
Elab II	677,294	6,312	\$193,968	\$448,907	2.3		
Total	2,529,156	17,050	\$593,914	\$1,039,875	1.8		

- M&V savings amount to greater than 30% savings of baseline energy use
- M&V savings exceeded predicted savings by >20%

Early and Consistent Teamwork & Communication

- 1. Key to project success during all project phases.
- 2. Allows an open stage to voice questions and concerns from different vantage points
- 3. No one gets left in the dark about changes in lab operation
- 4. Allows input from all parties where critical decisions are made before project implementation
- 5. Allows for the safest, most energy efficient and best functioning final product where <u>all parties</u> <u>are aware of the changes made and why.</u>

2014 – 2016 Stepwise - Multidisciplinary Approach

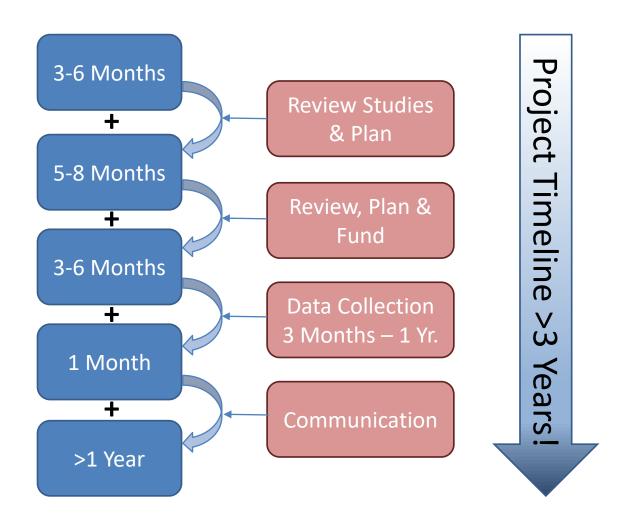
Step 1

Multi-Building Scoping Audits

Step

 Focused Lab Optimization Studies on Selected Lab Buildings

Step


 Implementation, Commissioning & Owner Training

Step

 Measurement & Verification of Safety and Savings

Step 5

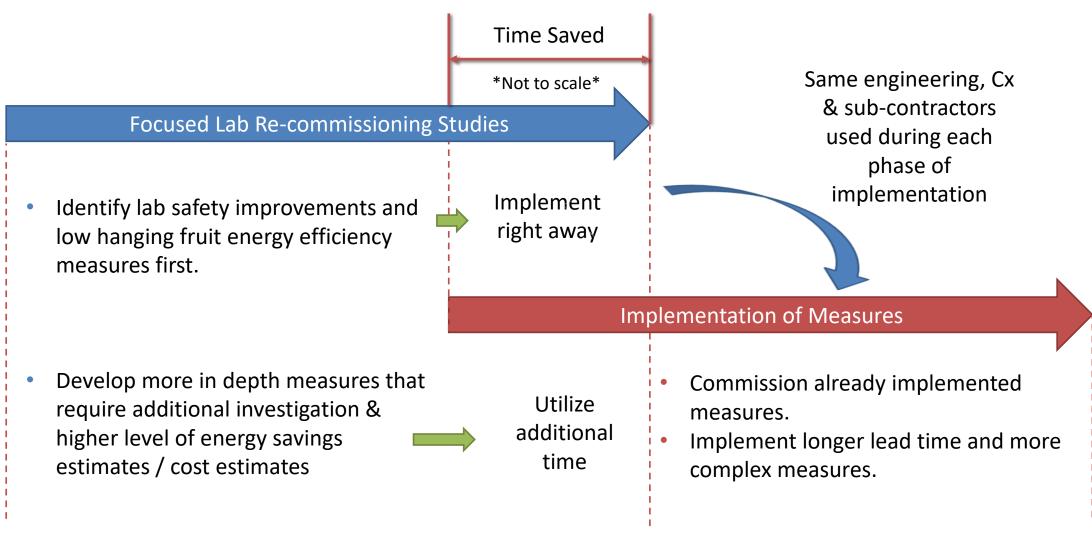
 Persistence via Communication & Continuous Commissioning

How can Owners and Consultants make better use of time?

- 1. Have an end goal before starting campus wide optimization projects
- 2. Take advantage of a well assembled project team when reviewing studies, planning and funding.
 - Cuts down on time between project phases.
- 3. Have confidence in preliminary scoping study results.
 - Invest enough time up front to avoid pitfalls.
- 4. Capitalize on low hanging fruit and items related to safety that should be addressed regardless of payback or energy benefit.

"How did it get so late so soon?" - Dr. Seuss

2018 – Life Science Labs


- Life Science Labs North & South
 - 4/2 years old (North/South)
 - 310,000 ft² (50% labs)
 - 7,432,504 kWh Baseline
 - 24,580 MLbs Steam Baseline
 - \$1,234,850 in Energy Annually –
 Baseline
 - EUI: 240 kBtu/ft² Baseline (2016/2017)

Project Constraints / Objectives

- Re-commission LSL North & South by
 12/31/2018 Start date 2/1/2018
 - Focused RCx Study & Implementation of Energy Efficiency Measures
- Focus on building functionality & energy improvement opportunities.
- UMass felt as though original building commissioning was not thorough or complete.
- B2Q Scoping Study completed on LSL North in 2015
 - LSL South was not finished construction at this time

Implementation in Parallel

What kind of measures?

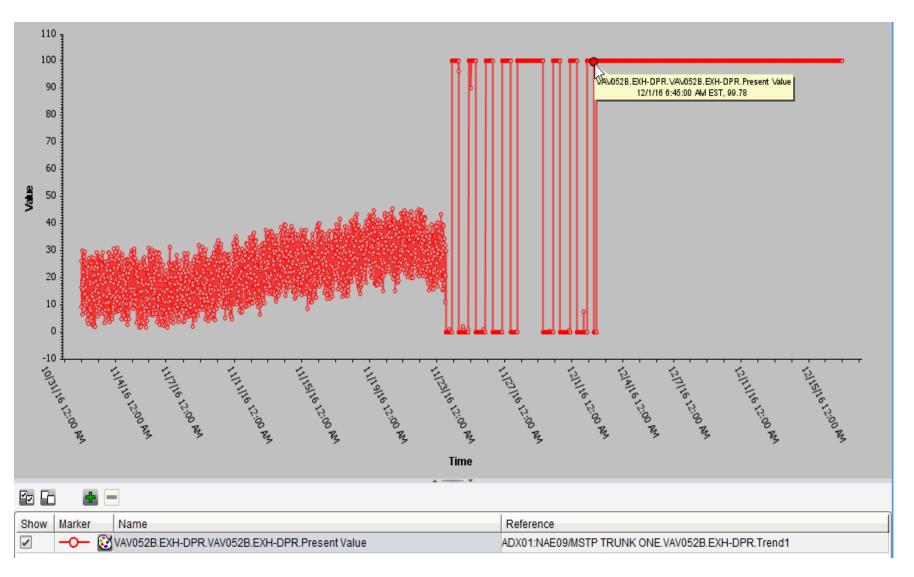
LSL North - Summary of Recommended Measures for Immediate Implementation									
2015 EEM #	2018 EEM # FIM #	Measure Description	Total Electric Savings	ISB CHW Savings	Electric Cost Savings	Steam Savings	Steam Cost Savings	Total Cost Savings	Project Cost Estimate
			kWh	kWh	\$	MLbs	\$	\$	\$
1A,B,C	1	Optimize Air Change Rates and add/revise Occupancy Control	490,059	83,882	\$49,006	868	\$17,360	\$66,366	\$281,755
	2	Repair Airside Mechanical Issues	168,653	89,215	\$16,865	48	\$960	\$17,825	\$72,740
2	3	AHU-1.3, 1.4, 1.5, 1.6 Supply Static Pressure Reset	62,300	0	\$6,230	0	\$0	\$6,230	\$44,522
4	4	Optimize Heat Pipe Control of AHU-1.5 & 1.6	27,234	27,234	\$2,723	33	\$666	\$3,389	\$11,743
5	5	Optimize Enthalpy Wheel Control on AHUs- 1.3 & 1.4	62,777	62,777	\$6,278	0	\$0	\$6,278	\$18,760
	6	Optimize Heat Reclaim Chiller CHW Pump Operation	52,571	0	\$5,257	0	\$0	\$5,257	\$7,294
	7	Optimize DAT Reset on AHUs 1.3, 1.4, 1.5 & 1.6	0	0	\$0	375	\$7,500	\$7,500	\$8,582
6A,B,C	8	Optimize Heat Reclaim Chiller Operation	TBD	TBD	TBD	TBD	TBD	TBD	\$26,550
3	9	Exhaust Fan Static Pressure Control Reduction	100,664	0	\$10,066	0	\$0	\$10,066	\$16,389
	FIM-1	Repair VAV Reheat Valve Mechanical Issues							\$24,856
	FIM-2	3							\$13,032
		Fume Hood Recertification							\$49,460
	FIM-3B	Fume Hood Integration to Metasys							\$106,046
	FIM-3C	Fume Hood Control RCx, Optimization & Integration (Inc. FIMs 3A & 3B)							\$276,312
	FIM-4	Optimize Lab Purge Mode Operation			-	-		-	\$19,104
	FIM-5								\$3,629
	FIM-6	CHW, Steam & HW Metering Upgrades Allowance							\$61,824
7A		Optimize Primary CHW Pump Control			rt Measure				\$2,760
7B		Optimize Secondary CHW Pump Control	Ori		rt Measure				\$2,760
	LSL North Totals 964,258				\$96,426			\$122,912	
		% Reduct.		mple Payb					
Electric Consumption (kWh/yr) 5,053,920		19%		y Savings f					
Steam Consumption (MLbs/yr) 17,149			8%		tential Elec				\$241,065
CHW Consumption (kWh/yr) 616,879			43%		Net Projec				\$651,548
				Simple	e Payback	After Pote	ential Utility	/ Incentive:	5.3

Occupancy Sensors either failed or not tied to HVAC control

"Airside" mechanical issues – Supply & Exhaust VAV damper actuator failures

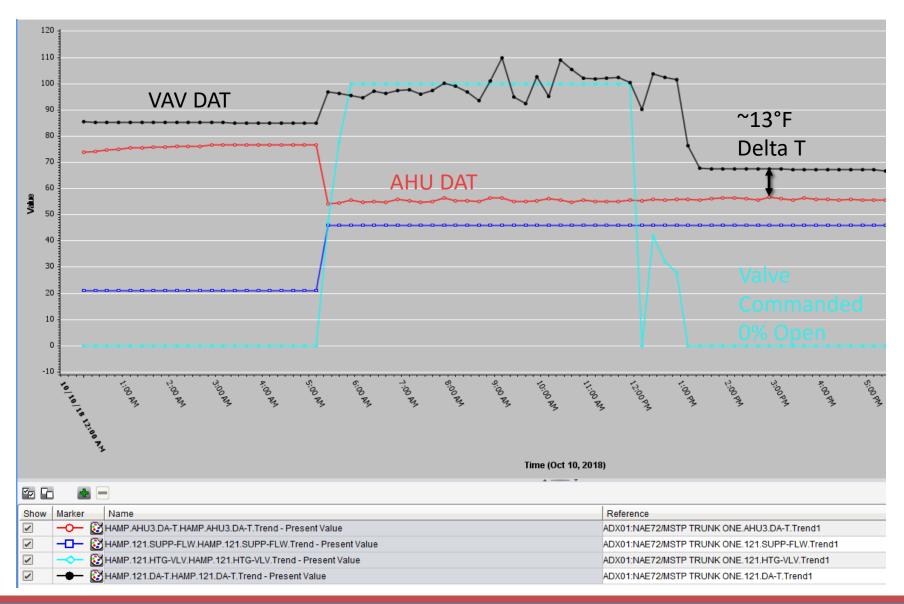
Pumps left in operator override @ 100% speed when proper control is feasible

"Waterside" mechanical issues – Supply VAV & FCU valve actuator failures & leaking valves


Excluding EEM-1 Occupancy Sensors... these measures combine for a 2.7 yr simple payback after utility incentives

Occupancy Sensor Issues

- 53 Lab zones in LSL North had unresponsive occupancy sensors reporting occupancy 100% of the time
- Occupancy control is crucial to control occupied and unoccupied ACH.
- These issues needed to be addressed prior to implementing new lab ventilation rates in accordance with EH&S recommendations.
- NOT low cost OR low time but extra time was required to implement one of the largest energy efficiency measures in a safe manner



Airside Mechanical Issues

- Hunting VAV caused actuator to fail.
- Could cause lab pressurization
 & safety issues.
- Simple fix to tune PID control loop to eliminate hunting & install a new damper actuator
- Low cost & low implementation time
- LSL North & South(4 & 2 yrs.
 Old) Combined for 33 airside mechanical issues
- ISB (8 years old) had 96 airside issues!

Waterside Mechanical Issues

- Likely failed valve body.
 - Actuator works as temperature responds to valve position.
- Simple fix to replace valve body and re-attach actuator.
- Low cost & low implementation time
- Other issues include unresponsive valve actuators.
- LSL North & South Combined for ~30 waterside issues

Pros & Cons to Implementing in Parallel

Pros

- Cut down on project timelines
- Engage your implementation team/subcontractors early in the study phase and get into a rhythm
- Allows for easier/quicker/lower cost implementation items to get out of the way early
- Allows for some longer implementation items to get started, and therefore finished, earlier.
- Allows for additional time to be spent on complex measures during the tail end of the study phase.
- Commissioning can be completed during the true implementation phase; allowing fixes, if needed, to be performed.

Cons

- Project funding needs to be in place up front.
 - This can be overcome with early communication of findings that precede a final study
 - Sound economic analysis, energy modeling and similar past project success aided in this hurdle being overcome
- Taxing on manpower and project management to oversee an energy study as well as subcontractors performing implementation

How Much Time Was Saved?

ISB & ELAB II

- Combined 211,000 ft²
- Total implementation cost \$1,039,875
- Scoping studies completed Dec. 2015.
- Focused lab optimization study completed Sept. 2016
- 100% Implementation completed
 Sept. 2017
- Total timeline just under 3 years.
 - +1 year M&V completed Sep.2018

LSL North & South

- Combined 310,000 ft²
- Total implementation cost ~\$1,600,000
- Scoping studies completed Dec. 2015.
- Focused lab optimization studies started
 Feb. 1, 2018
- 100% Implementation projected to be complete by Feb./Mar. 2019
- Total timeline ~1.5 yrs.
 - ~2 year pause between scoping & focused lab study for Elab II & ISB

Concluding Thoughts

- 1. Taking an implementation in parallel approach allowed the project team to receive project funding and begin implementation prior to completing the "study phase" of the project.
- 2. Early, consistent and clear communication throughout all project stakeholders was key to allowing this process to take place.
- 3. While there was a ~2 year gap between scoping study & focused lab study/implementation, the total project time worked on LSL is projected to be cut in half for LSL when compared to ISB & ELab II
 - The 2 year gap was used to perform focused lab studies and implementation on ISB & ELab II while the remainder of LSL South was built out.

162

A Woman Business Enterprise (WBE)

100 Burtt Rd. Ste. 212 Andover, MA 01810

Chris Schmidt – Senior Project Manager cschmidt@b2qassociates.com (603) 247-1575 (Cell)

Brad Newell – Project Manager bnewell@b2qassociates.com (603) 703-3932 (Cell) (978) 447-5604 (Office)

Questions?

Acknowledgements:

- University of Massachusetts Amherst
 - Physical Plant, EH&S, R&E, Design & Construction Management
- DCAMM
- Eversource
- Ralph Stuart, CIH & Rob Klein, MS, CIH
- Howse Corporation
- Lab Controls Systems
- FlowTech
- Performance Test & Balance
- Adams Plumbing and Heating
- SEMCo
- FacilityConneX